Activity 17 Crop Rotation with Potatoes (Quebec) Annual Report – March 31, 2016

Overall Objective

The overall objective of this activity is to complement Activity 16 (*Assessment of the impact and interactions of emerging crops on potato-based cropping systems*) and to complete the following:

- 1. Evaluate the integration of canola in a potato cropping system and measure the benefits and/or negative impacts during the potato year.
- 2. Compare rotation systems including canola with conventional and new potato cropping systems.
- 3. Determine the best temporal position in the cropping system for the canola and evaluate the impact on other crops included in the rotation.
- 4. Evaluate the influence of canola crop on potato soil-borne disease evolution.
- 5. Measure nutrient balance and economic impact.

<u>Audience</u>

The audience is crop producers, specifically those who grow or who have an interest in growing canola.

Highlights

Since the project is at the beginning of the 5-year experiment it's still too soon to reveal any real impact of the different rotation systems on the crops. However, the outcomes below identify the processes used in this experiment.

Outcomes

Objectives

Objectives of this activity are to:

- 1. Evaluate the integration of canola in a crop rotation system for production of potato and measure the benefits and/or negative impacts during the potato year;
- 2. Compare rotation system including canola with conventional and new potato crop rotation system; and
- 3. Determine the best temporal position in the crop rotation system for the canola and evaluate the impact on other crops included in this rotation.

Methodology

The trial took place in Ste-Croix near Quebec City. The plots were established in a sandy soil.

This trial takes place over five years. Each year, a rotation pattern is set up on the same place in the field. For the second year (2015), plots were planted with buckwheat, barley, canola, potatoes, soybean or corn.

The following rotation system was used:

Table I. Rotation system

Treatment	Year											
Treatment	2014	2015	2016	2017	2018							
T1	Ρ	В	Р	В	Р							
T2	Ρ	М	Р	М	Р							
T3	Р	С	Р	С	Р							
T4	Р	S	Р	S	Р							
T5	Р	S	С	Р	S							
T6	Р	С	S	Р	С							
17	Р	S	S	Р	S							
T8	Р	С	С	Р	С							
Т9	Р	В	Н	Р	В							
T10	Р	S	В	Р	S							
T11	Р	В	S	Р	В							
T12	Р	С	В	Р	С							
T13	Р	В	С	Р	В							
T14	Р	М	S	Р	М							
T15	Р	S	М	Р	S							
T16	Р	М	S	Р	М							
T17	Р	С	М	Р	С							
T18	Р	М	С	Р	М							
T19 (Monoculture)	Р	Р	Р	Р	Р							

P: Potato, B: Barley, M: Maize (corn), S: Soybean, C: Canola, B: Buckwheat, H: Hay

The experiment was conducted in a randomized complete block design with four replicates. The plots have an area of 28 m^2 .

12101	12102	12103	12104	12105	12106	12107	12108	12109	12110	12111	12112	12113	12114	12115	12116	12117	12118	12119
T8	T4	T3	T19	T2	T11	T1	T12	T5	T14	T7	T13	T9	T10	T17	T16	T15	T18	T6
12201	12202	12203	12204	12205	12206	12207	12208	12209	12210	12211	12212	12213	12214	12215	12216	12217	12218	12219
T4	T2	T19	T11	T12	T1	T8	T9	T16	T7	T13	T3	T5	T14	T18	T15	T6	T17	T10
12301	12302	12303	12304	12305	12306	12307	12308	12309	12310	12311	12312	12313	12314	12315	12316	12317	12318	12319
T5	T18	T6	T10	T13	T2	T4	T19	T17	T14	T9	T8	T12	T7	T1	T11	T16	T15	T3
12401	12402	12403	12404	12405	12406	12407	12408	12409	12410	12411	12412	12413	12414	12415	12416	12417	12418	12419
T6	T8	T10	T1	T14	T17	T18	T15	T9	T12	T4	T5	T19	T11	T3	T7	T16	T2	T13

Figure 1. Experimental design used in Ste-Croix

Potato tubers and corn were hand planted with a ruler and cereals plots were sown with a Melroe 244 cereal drill of 18 rows on May 29th.

Harvest of each crop was completed on the following dates:

- Buckwheat: August 10th
- Barley: August 25th
- Canola: September 2nd
- Potato: September 23rd
- Soybean: October 21st
- Corn: October 21st

Measured parameters for cereals were:

- 1. Fresh weight of 1 m² of grain;
- 2. Weight of 1 m² of shoot biomass;
- 3. Fresh weight of 500 grains; and
- 4. Fresh weight of 500 ml of grain.
 - a. Test weight was calculated from those data using the "Test Weight Conversion Chart" from the Canadian Grain Commission.

Measured parameters for potatoes were:

- 1. Yield of the different size categories;
- 2. External quality (growth crack, misshapen, common scab, rhizoctonia, etc.);
- 3. Internal quality (hollow heart, brown center, vascular discoloration, etc.); and
- 4. Specific gravity.

Results

Since the project is at the beginning of the 5-year experiment it's still too soon to reveal any real impact of the different rotation systems on the crops. At first, it should be reminded that in 2014, potatoes were planted in every plot. With that said, it's important to specify that each one of the crops planted in 2015, i.e. buckwheat, barley, canola, potato, soybean and corn, received the same amount of crop residue (potato). At this stage of this 5-year experiment, we shouldn't expect to see any difference or at least very few between the different treatments, since the previous crop was the same for every plot.

Also, it is relevant to note that yields for all crops were high and this may be justified by "the plot effect." Because we used a commercial-type drill in really small plots, it was more difficult to achieve a constant and fairly fast speed to allow a plant density similar to producers. This led to a seeding rate slightly higher than what is conducted in fields. Furthermore, as compared to what is observed in commercial crops, when we harvest the one square meter plot, there was no shortage and all the grains were collected. This "plot effect" is also observe every year in potato plots, since yields are often quite high.

Aside from the potatoes, no disease and no insects (except for few flea beetle in soybean) were observed in the different crops. As the fields have never grown canola, barley or buckwheat, it is not surprising to see these results.

Results interpretation

- 1. Results obtained for most of the crops implanted in this second year of the 5-year experiment show that there is no significant difference amongst the treatments. With potato plots established in 2014 for all treatments, these results are what we expected.
- 2. Most of the crops (except the potatoes and soybean) were free of diseases and insects. This could be explained by the fact that canola, barley and buckwheat were never grown in this field, at least not in the last 10 years.
- 3. The treatment with potato plots (monoculture) has generated fewer yields in 2015 than 2014. Since potatoes were grown in this field last year, and also several times in the past years, it was possible to see common diseases (late blight) related to this crops. This data could be the result of negative effects of potato monoculture. Upcoming tests (2016, 2017, etc.) will allow us to

further analyze the results.

4. The soybean crop yield is higher for one treatment, i.e. T7, compared to the other treatments, regarding the shoot biomass as well as the weight of 500 grains. At first sight, nothing could justify those differences, but when we analysed the results, it appears that only one replicate of the T7 treatment shows significantly higher results. Since fertilization was made by broadcast application, it may be possible that this particularly plot received more fertilizer.

Issues

At year 2 of this 5-year project, various crops were sown in plots. Because we used a commercial-type drill in really small plots, it was more difficult to achieve a constant and fairly fast speed to allow a plant density similar to producers. This led to a seeding rate slightly higher than what is generally used in fields. For the upcoming year of the project, some modifications will be made and some parts will be replaced on the drill in order to have more uniform plots.

Future Work

The experiment will be implemented again next year.